题目内容

如图,在△ABC中,AD是BC边上中线.
(1)如果AD=
1
2
BC,求证:△ABC是直角三角形;
(2)如果AB=5,AC=13,AD=6.求BC的长.
考点:全等三角形的判定与性质,等腰三角形的性质,勾股定理
专题:
分析:(1)根据三角形的中线定义求出AD=BD=DC,然后根据等边对等角的性质得到∠B=∠BAD,∠C=∠CAD,再根据三角形的内角和等于180°列式计算即可求出∠BAC=90°.
(2)延长AD到E使AD=DE,连接CE,证△ABD≌△ECD,求出AE和CE的长,根据勾股定理的逆定理求出∠E=90°,根据勾股定理求出CD即可.
解答:证明:(1)∵AD=
1
2
BC,BD=CD=
1
2
BC,
∴AD=BD=DC,
∴∠B=∠BAD,∠C=∠CAD,
∵∠B+∠BAD+∠CAD+∠C=180°,
∴∠BAD+∠CAD=90°,
即∠BAC=90°.
(2)延长AD到E使AD=DE,连接CE,

在△ABD和△ECD中
AD=DE
∠ADB=∠EDC
BD=DC

∴△ABD≌△ECD(SAS),
∴AB=CE=5,AD=DE=6,AE=12,
在△AEC中,AC=13,AE=12,CE=5,
∴AC2=AE2+CE2
∴∠E=90°,
由勾股定理得:CD=
DE2+CE2
=
61

∴BC=2CD=2
61
点评:本题综合考查了勾股定理、勾股定理的逆定理、全等三角形的性质和判定、三角形的中线等知识点的应用,关键是正确地作辅助线,把已知条件转化成一个直角三角形,题型较好.本题考查了直角三角形斜边上的中线等于斜边的一半证明,主要利用了等边对等角的性质以及三角形的内角和定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网