搜索
题目内容
将二次函数
化为
的形式,结果为( )
A.
B.
C.
D.
试题答案
相关练习册答案
D.
试题分析:
. 故选D.
练习册系列答案
本土精编系列答案
课时练优化测试卷系列答案
桂壮红皮书应用题卡系列答案
快乐过暑假系列答案
同步练习册全优达标测试卷系列答案
英才教程探究习案课时精练系列答案
小学学习好帮手系列答案
初中语文阅读轻松组合周周练系列答案
小学同步三练核心密卷系列答案
剑桥小学英语系列答案
相关题目
如图,抛物线y=-x
2
+bx+c与x轴交于点A(1,0)、C,交y轴于点B,对称轴x=-1与x轴交于点D.
(1)求该抛物线的解析式和B、C点的坐标;
(2)设点P(x,y)是第二象限内该抛物线上的一个动点,△PBD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;
(3)点G在x轴负半轴上,且∠GAB=∠GBA,求G的坐标;
(4)若此抛物线上有一点Q,满足∠QCA=∠ABO,若存在,求直线QC的解析式;若不存在,试说明理由.
如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发,以相同的速度沿BC向右运动,到达DC中点停止;已知P、Q同时出发,以PQ为边作正方形PQMN,使正方形PQMN和△ABC在BC的同侧,设运动的时间为t秒(t
≥0).
(1)当点N落在AB边上时,t的值为
,当点N落在AC边上时,t的值为
;
(2)设正方形PQMN与△ABC重叠部分面积为S,求出当重叠部分为五边形时S与t的函数关系式以及t的取值范围;
(3)(本小题选做题,做对得5分,但全卷不超过150分)
如图2,分别取AB、AC的中点E、F,连接ED、FD,当点P、Q开始运动时,点G从BE中点出发,以每秒
个单位的速度沿折线BE-ED-DF向F点运动,到达F点停止运动.请问在点P的整个运动过程中,点G可能与PN边的中点重合吗?如果可能,请直接写出t的值或取值范围;若不可能,请说明理由.
设抛物线
过A(0,2),B(4,3),C三点,其中点C在直线
上,且点C到抛物线对称轴的距离等于1,则抛物线的函数解析式为
.
如图,已知直线l的解析式为
,抛物线y = ax
2
+bx+2经过点A(m,0),B(2,0),D
三点.
(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;
(2)已知点 P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E, 延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数, 并求出S的最大值及S最大时点P的坐标;
(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.
如果将抛物线y=x
2
+2向下平移1个单位,那么所得新抛物线的表达式是( )
A.y=(x-1)
2
+2
B.y=(x+1)
2
+2
C.y=x
2
+1
D.y=x
2
+3
二次函数y=(2x-1)
2
+2的顶点的坐标是
A.(1,2)
B.(1,-2)
C.(
,2)
D.(-
,-2)
如图,在平面直角坐标系中,抛物线
经过平移得到抛物线
,其对称轴与两段抛物线所围成的阴影部分的面积为( )
A.2
B.4
C.8
D.16
如图,在矩形ABCD中,AB=1,BC=3,点E为BC边上的动点(点E与点B、C不重合),设BE=x.
操作:在射线BC上取一点F,使得EF=BE,以点F为直角顶点、EF为边作等腰直角三角形EFG,设△EFG与矩形ABCD重叠部分的面积为S.
(1)求S与x的函数关系式,并写出自变量x的取值范围;
(2)S是否存在最大值?若存在,请直接写出最大值,若不存在,请说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案