题目内容
如图,在
ABC中,∠C=90º,BD是
ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形,
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长
(1)过点O作ON⊥AB于点M
∵正方形OECF
∴OE=EC=CF=OF,OE⊥BC于E,OF⊥AC于F
∵BD平分∠ABC,OM⊥AB于M,OE⊥BC于E
∴OM=OE=OF
∵OM⊥AB于M, OE⊥BC于E
∴∠AMO=90°,∠AFO=90°
∵![]()
∴Rt△AMO≌Rt△AFO
∴∠MA0=∠FAO
∴点O在∠BAC的平分线上
(2)方法一:
∵Rt△ABC中,∠C=90°,AC=5,BC=12
∴AB=13
易证:BE=BM,AM=AF
又BE=BC-CE,AF=:AC-CF,而CE=CF=OE
故:BE=12-OE,AF=5-OE
显然:BM+AM=AB
即:BE+AF=13
12-OE+5-OE=13
解得OE=2
方法二
利用面积法:
S△ABC=![]()
S△ABC=![]()
从而解得。
练习册系列答案
相关题目