题目内容
如图,AB是⊙O的直径,点D,C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC的度数为( )
A. 15° B. 30° C. 45° D. 60°
某市为了构建城市立体道路网络,决定修建一条轻轨铁路,为使工程提前半年完成,需要将工作效率提高25%,原计划完成这项工程需要多少个月?
【答案】原计划完成这项工程需要30个月
【解析】试题设原计划完成这项工程需要x个月,由等量关系“工程提前6个月完成,需将原定的工作效率提高25%”列出方程,求解即可
试题解析:设原计划完成这项工程需要x个月,则有
解得x=30
经检验x=30是原方程的根
答:原计划完成这项工程需要30个月
考点:分式方程的应用
【题型】解答题【结束】24
如图,一次函数分别交y轴、x轴于C、D两点,与反比例函数y=(x>0)的图象交于A(m,8),B(4,n)两点.
(1)求反比例函数的解析式;
(2)根据图象直接写出<的x的取值范围;
(3)求的面积.
设函数y=x-4与的图象的交点坐标为(m,n),则的值为_____.
如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的最大水平距离AB为3米,则秋千摆至最高位置时与最低位置时的高度之差(CD)为________米.
如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( )
A.3 B.4
C. D.
如图,扇形纸叠扇完全打开后,扇形ABC的面积为300π cm2,∠BAC=120°,BD=2AD,则BD的长度为______cm.
如图,在△ABC中,AB=BC=2,以AB为直径的⊙O分别交BC、AC于点D、E,且点D为BC的中点.
(1)求证:△ABC为等边三角形;
(2)求DE的长;
(3)在线段AB的延长线上是否存在一点P,使△PBD≌△AED?若存在,请求出PB的长;若不存在,请说明理由.
码头工人每天往一艘轮船上装载货物,装载速度y(吨/天)与装完货物所需时间x(天)之间的函数关系如图.
(1)求y与x之间的函数表达式;
(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?
(3)若原有码头工人10名,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?
下列各选项中所列举的两个变量之间的关系,是反比例函数关系的是( )
A. 直角三角形中,30°角所对的直角边长y与斜边长x之间的关系
B. 等腰三角形中顶角与底角之间的关系
C. 圆的面积S与它的直径d之间的关系
D. 面积为20 cm2的菱形,其中一条对角线长y与另一条对角线长x之间的关系