题目内容
如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,BF⊥AM于点F,连接BE.
(1)求证:AE=BF;
(2)已知AF=2,四边形ABED的面积为24,求∠EBF的正弦值.
如图,四边形ABCD为平行四边形,EB⊥BC于点B,ED⊥CD于点D.若∠E=55°,则∠A的度数是( )
A. 100° B. 110° C. 125° D. 135°
若关于x的一元二次方程(a-1)x2-2x+2=0有实数根,则整数a的最大值为( )
A. -1 B. 0 C. 1 D. 2
已知|a-4|+|b-8|=0,求的值.
如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.
(1)求抛物线y2的解析式;
(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是_____.
在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )
A. B. 或
C. D. 或
已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是( )
A. 1<x< B. C. D.
如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.
(1)求证:△ABF≌△EDA;
(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.