题目内容
如图,在△AOB中,∠BOA=90°,∠BOA的两边分别与函数、的图象交于、两点,若,则AO的值为( )
A. B. C. D.
若关于x的不等式的解集在数轴上表示如下,则其解集为
计算:
如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DF平分∠EDC交BC于F,DE⊥DC交AB于点E,连结EF.
(1)证明:EF=CF
(2)当tan∠ADE =时,求EF的长.
从这七个数中,随机取出一个数,记为,那么使关于的方程有整数解,且使关于的不等式组 有解的概率为 .
如图,在△ABC中,AB=AC=13,AD为BC边上的中线,BC=10,DE⊥AC于点E,则tan∠CDE的值等于( )
如图,已知抛物线(b、c是常数,且c<0)与x轴交于A、B两点(点A在点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).
(1)b=______,点B的横坐标为_______(上述结果均用含c的代数式表示);
(2)连结BC,过点A作直线AE//BC,与抛物线交于点E.点D是x轴上一点,坐标为(2,0),当C、D、E三点在同一直线上时,求抛物线的解析式;
(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连结PB、PC.设△PBC的面积为S.①求S的取值范围;②若△PBC的面积S为正整数,则这样的△PBC共有_____个.
分解因式:a3-4a= .
在“爱满江阴”慈善一日捐活动中,
某学校团总支为了了解本校学生的捐款情况,随机抽取了
50名学生的捐款数进行了统计,并绘制成下面的统计图.
(1)这50名同学捐款的众数为 ,中位数为 .
(2)该校共有600名学生参与捐款,请估计该校学生的捐款总数.