题目内容


已知二次函数y=x2﹣4x+3.

(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;

(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.


              解:(1)y=x2﹣4x+3

=x2﹣4x+4﹣4+3

=(x﹣2)2﹣1,

所以顶点C的坐标是(2,﹣1),

当x<2时,y随x的增大而减少;

当x>2时,y随x的增大而增大;

(2)解方程x2﹣4x+3=0

得:x1=3,x2=1,

即A点的坐标是(1,0),B点的坐标是(3,0),

过C作CD⊥AB于D,

∵AB=2,CD=1,

∴S△ABC=AB×CD=×2×1=1.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网