题目内容
分析:先由PC为⊙O的切线得出∠PCO=90°,再用等腰三角形性质求出∠ACO=∠PAC=35°,最后利用三角形内角和即可求解.
解答:
解:连接OC,PC为⊙O的切线,所以∠PCO=90°,
因为OA=OC,则∠ACO=∠PAC=35°,
在△ACP中,∠P=180°-35°-35°-90°=20°.
故选B.
因为OA=OC,则∠ACO=∠PAC=35°,
在△ACP中,∠P=180°-35°-35°-90°=20°.
故选B.
点评:本题是考查圆的切线的性质、等腰三角形性质、三角形内角和的综合运用能力.
练习册系列答案
相关题目