题目内容
如图,在?ABCD中,∠ABC,∠BCD的平分线BE,CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=3,BC=5,CF=2,则BE的长为( )
A.2 B.4 C.4 D.5
如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为( )
A.π-1 B.2π-1 C.π-1 D.π-2
如图是第29届北京奥运会上获得金牌总数前六名国家的统计图,则这组金牌数的中位数是 枚.
阅读材料,解答问题:
我们可以利用解二元一次方程组的代入消元法解形如的二元二次方程组,实质是将二元二次方程组转化为一元一次方程或一元二次方程来求解.其解法如下:
【解析】由②得:y=2x-5 ③
将③代入①得:x2+(2x-5)2=10
整理得:x2-4x+3=0,解得x1=1,x2=3
将x1=1,x2=3代入③得y1=1×2-5=-3,y2=2×3-5=1
∴原方程组的解为,.
(1)请你用代入消元法解二元二次方程组:;
(2)若关x,y的二元二次方程组有两组不同的实数解,求实数a的取信范围.
把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是
计算sin245°+tan60°•cos30°值为( )
A.2 B. C.1 D.
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为( )
A. B.1 C. D.2
如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是 .