题目内容
【题目】△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),点F,G,P分别是DE,BC,CD的中点,连接PF,PG.
![]()
(1)如图①,α=90°,点D在AB上,则∠FPG= °;
(2)如图②,α=60°,点D不在AB上,判断∠FPG的度数,并证明你的结论;
(3)连接FG,若AB=5,AD=2,固定△ABC,将△ADE绕点A旋转,当PF的长最大时,FG的长为 (用含α的式子表示).
【答案】(1)90°;(2)120°,证明见解析;(3)
.
【解析】
(1)由AB=AC、AD=AE,得BD=CE,再根据G、P、F分别是BC、CD、DE的中点,可得出PG∥BD,PF∥CE.则∠GPF=180°﹣∠α=90°;
(2)连接BD,连接CE,由已知可证明△ABD≌△ACE,则∠ABD=∠ACE.因为G、P、F分别是BC、CD、DE的中点,则PG∥BD,PF∥CE.进而得出∠GPF=180°﹣∠α=120°;
(3)当D在BA的延长线上时,CE=BD最长,此时BD=AB+AD=5+2=7,再由三角形中位线定理即可算出PG=3.5,在Rt△GPH中,由三角函数的定义即可求出GH,进一步求出FG.
解:(1)∵AB=AC、AD=AE,∴BD=CE,
∵G、P、F分别是BC、CD、DE的中点,
∴PG∥BD,PF∥CE.∴∠ADC=∠DPG,∠DPF=∠ACD,
∠GPF=∠DPF+∠DPG=∠ADC+∠ACD=180°﹣∠BAC=180°﹣∠α=90°,
即∠GPF=90°;
故答案为:90;
(2)∠FPG=120°;
理由:连接BD,连接CE.
∵∠BAC=∠DAE,∴∠BAD=∠CAE,
在△ABD和△ACE中,
∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,
∵G、P、F分别是BC、CD、DE的中点,
∴PG∥BD,PF∥CE.∴∠PGC=∠CBD,
∠DPF=∠DCE=∠DCA+∠ACE=∠DCA+∠ABD,
∠DPG=∠PGC+∠BCD=∠CBD+∠BCD,
∠GPF=∠DPF+∠DPG=∠DCA+∠ABD+∠CBD+∠BCD=180°﹣∠BAC=180°﹣∠α=120°,即∠GPF==120°;
![]()
(3)连结BD,CE,过P作PH⊥FG于H,
由(2)可知,△ABD≌△ACE,∴BD=CE,且PG=PF=
BD,当D在BA的延长线上时,CE最长,即BD最长,此时BD=AB+AD=5+2=7,
∴PG=3.5,∵PF=PG,PH⊥FG,
∴∠GPH=
∠FPG=
(180°﹣∠α)=90°﹣
α,FG=2HG,
∴FG=2HG=2PGsin∠GPH=2×3.5×
=
.
故答案为:
.
![]()