题目内容
化简: ______, =________.
已知抛物线y=(x-m)2-(x-m),其中m是常数.
(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x=.
①求该抛物线的函数表达式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.
如图,AB=AC,要使△ABE≌△ACD,应添加的条件是_______________.(添加一个条件即可).
已知关于x的方程x2-(k+2)x+2k=0.
(1)小明同学说:“无论k取何实数,方程总有实数根。”你认为他说的有道理吗?为什么?
(2)若等腰三角形的一边长a=1,另两边长b、c恰好是这个方程的两个根,求△ABC的周长。
观察下列等式:①=+1;②=+;③=+;……,请用字母n表示你所发现的律:即=____________________。
某型号的手机连续两次降阶,每个售价由原来的1185元降到580元,设平均每次降价的百分率为,则列出方程正确的是 ( )
A. B. C. D.
(2016·大连中考)如图,抛物线y=x2-3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E.
(1)求直线BC的解析式;
(2)当线段DE的长度最大时,求点D的坐标.
(14分)如图,已知抛物线()与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )