题目内容
下列四个多项式中,利用平方差公式分解因式的是
A. B.
C. D.
已知二次函数为常数且与一次函数,令.
若,的函数图象相交于x轴上的同一点.
求k的值;
当x为何值时,M的值最小,试求出该最小值.
当时,M随x的增大而减小,请写出,的大小关系并给予证明.
下列命题的逆命题是真命题的是( )
A. 如果a>0,b<0,则a﹣b>0 B. 两直线平行,同旁内角互补
C. 四边形是多边形 D. 若a>0,则|a|=a
若实数的倒数为,则实数a的值为______.
如图,已知,线段m,用尺规作图作菱形ABCD,使它的边长为m,一个内角等于其具体步骤如下:
作;
以点A为圆心,线段m长为半径画弧,交AE于点B,交AF于点D;
__________;
连接BC、DC,则四边形ABCD为所作的菱形第步应为
A. 分别以点B、D为圆心,以AF长为半径画弧,两弧交于点C
B. 分别以点E、F为圆心,以AD长为半径画弧,两弧交于点C
C. 分别以点B、D为圆心,以AD长为半径画弧,两弧交于点C
D. 分别以点E、F为圆心,以AF长为半径画弧,两弧交于点C
如图,已知AB⊥BD,CD⊥BD
(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在,请说明理由;
(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(3)若AB=9,CD=4,BD=15,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?并求BP的长;
(4)若AB=m,CD=n,BD=l,请问m,n,l满足什么关系时,存在以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似的一个P点?两个P点?三个P点?
如图,将正方形纸片ABCD沿MN折叠,使点D落在边AB上,对应点为D′,点C落在C′处.若AB=6,AD′=2,则折痕MN的长为 .
如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为( )
A. (2,5) B. (2.5,5) C. (3,5) D. (3,6)
如图,正方形ABCD中,BE=EF=FC,CG=2GD,BG分别交AE,AF于M,N.下列结论:①AF⊥BG;②BN=NF;③;④.其中正确的结论的序号是______.