题目内容
观察下列等式:
|1-
|=
-1,|
-
|=
-
,|
-
|=
-
将以上三个等式相加得|
-
|+|
-
|+|
-
|=
-1+
-
+
-
=
-1=2-1=1
(1)猜想并写出:|
-
|=
-
-
;
(2)直接写出下列格式的计算结果|
-
|+|
-
|+…+|
-
|=
-1
-1|
-
|+|
-
|+…+|
-
|=
-1
-1.
|1-
| 2 |
| 2 |
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
| 4 |
| 4 |
| 3 |
将以上三个等式相加得|
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| 2 |
| 3 |
| 2 |
| 4 |
| 3 |
| 4 |
(1)猜想并写出:|
| n |
| n+1 |
| n+1 |
| n |
| n+1 |
| n |
(2)直接写出下列格式的计算结果|
| 1 |
| 2 |
| 2 |
| 3 |
| 2012 |
| 2013 |
| 2013 |
| 2013 |
| 1 |
| 2 |
| 2 |
| 3 |
| n |
| n+1 |
| n+1 |
| n+1 |
分析:(1)根据题中所给出的式子进行猜想即可;
(2)根据题中所给出的例子进行解答即可.
(2)根据题中所给出的例子进行解答即可.
解答:解:(1)∵|1-
|=
-1,|
-
|=
-
,|
-
|=
-
,
∴|
-
|=
-
.
故答案为:
-
;
(2)∵|
-
|+|
-
|+|
-
|=
-1+
-
+
-
=
-1+
-
+
-
=
-1
=2-1
=2,
∴|
-
|+|
-
|+…+|
-
|
=
-1+
-
+…+
-
=
-1;
同理可得,|
-
|+|
-
|+…+|
-
|
=
-1+
-
+…+
-
=
-1.
故答案为:
-1,
-1.
| 2 |
| 2 |
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
| 4 |
| 4 |
| 3 |
∴|
| n |
| n+1 |
| n+1 |
| n |
故答案为:
| n+1 |
| n |
(2)∵|
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |
| 2 |
| 3 |
| 2 |
| 4 |
| 3 |
=
| 2 |
| 3 |
| 2 |
| 4 |
| 3 |
=
| 4 |
=2-1
=2,
∴|
| 1 |
| 2 |
| 2 |
| 3 |
| 2012 |
| 2013 |
=
| 2 |
| 3 |
| 2 |
| 2013 |
| 2012 |
=
| 2013 |
同理可得,|
| 1 |
| 2 |
| 2 |
| 3 |
| n |
| n+1 |
=
| 2 |
| 3 |
| 2 |
| n+1 |
| n |
=
| n+1 |
故答案为:
| 2013 |
| n+1 |
点评:本题考查的是实数的运算,根据题意找出规律是解答此题的关键.
练习册系列答案
相关题目