题目内容
(9分)先化简,再求值:+(2﹣14y+8x)÷(﹣2x),其中x=﹣,y=5.
为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这个样本的容量(即样本中个体的数量)是_____________.
(9分)如图,在平面直角坐标系xOy中,直线y=﹣x+b与x轴交于点A,与双曲线y=﹣在第二象限内交于点B(﹣3,a).
(1)求a和b的值;
(2)过点B作直线l平行x轴交y轴于点C,求△ABC的面积.
观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得( )
A.a2013=n B.a2013= C.a2013= D.a2013=
(14分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分线,点E、F分别是边AC、BC上的动点.AB=,设AE=x,BF=y.
(1)AC的长是 ;
(2)若x+y=3,求四边形CEDF的面积;
(3)当DE⊥DF时,试探索x、y的数量关系.
如图所示,把边长为1的正方形放在数轴上,以数1表示的点为圆心,正方形的对角线长为半径作弧,交数轴于点A,则点A表示的数是 .
如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是 cm.
某次测验后,60﹣70分这组人数占全班总人数的20%,若全班有45人,则该组的频数为 .
如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,OA=2,AB=,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.
(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;
(2)若点P在该抛物线上移动,当点p在第一象限内时,过点p作PQ⊥x轴于点Q,连接OP.若以O、P、Q为定点的三角形与以B、C、E为定点的三角形相似,直接写出点P的坐标;
(3)若点M(﹣4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.