题目内容


如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,

(1)求抛物线所对应的函数解析式;

(2)求△ABD的面积;

(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.

 


【考点】二次函数综合题.

【专题】代数几何综合题.

【分析】(1)在矩形OCEF中,已知OF、EF的长,先表示出C、E的坐标,然后利用待定系数法确定该函数的解析式.

(2)根据(1)的函数解析式求出A、B、D三点的坐标,以AB为底、D点纵坐标的绝对值为高,可求出△ABD的面积.

(3)首先根据旋转条件求出G点的坐标,然后将点G的坐标代入抛物线的解析式中直接进行判定即可.

【解答】解:(1)∵四边形OCEF为矩形,OF=2,EF=3,

∴点C的坐标为(0,3),点E的坐标为(2,3).

把x=0,y=3;x=2,y=3分别代入y=﹣x2+bx+c中,

解得

∴抛物线所对应的函数解析式为y=﹣x2+2x+3;

 

(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴抛物线的顶点坐标为D(1,4),

∴△ABD中AB边的高为4,

令y=0,得﹣x2+2x+3=0,

解得x1=﹣1,x2=3,

所以AB=3﹣(﹣1)=4,

∴△ABD的面积=×4×4=8;

 

(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,

∴点A对应点G的坐标为(3,2),

当x=3时,y=﹣32+2×3+3=0≠2,所以点G不在该抛物线上.

【点评】这道函数题综合了图形的旋转、面积的求法等知识,考查的知识点不多,难度适中.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网