题目内容

【题目】如图,抛物线y=ax2﹣(a+1)x﹣3与x轴交于点A、B,与y轴交于点C,∠BCO=45°,点M为线段BC上异于B、C的一动点,过点M与y轴平行的直线交抛物线于点Q,点R为线段QM上一动点,RP⊥QM交直线BC于点P.设点M的横坐标为m.

(1)求抛物线的表达式;
(2)当m=2时,△PQR为等腰直角三角形,求点P的坐标;
(3)①求PR+QR的最大值;②求△PQR面积的最大值.

【答案】
(1)

解:在y=ax2﹣(a+1)x﹣3中,令x=0可得y=﹣3,

∴C(0,﹣3),即OC=3,

∵∠BCO=45°,

∴OB=OC=3,

∴B(3,0),

把B点坐标代入抛物线解析式可得9a﹣3(a+1)﹣3=0,求得a=1,

∴抛物线的表达式为y=x2﹣2x﹣3


(2)

解:当m=2时,则M(2,0),

把x=2代入抛物线解析式可得y=﹣3,

∴Q(2,﹣3),

∵B(3,0),C(0,﹣3),

∴直线BC表达式为y=x﹣3,

∴可设P(p,p﹣3),则PR=2﹣p,QR=p﹣3﹣(﹣3)=p,

∵PR=QR,

∴2﹣p=p,解得p=1,

∴P(1,﹣2)


(3)

解:①由(2)可知M(m,m﹣3),Q(m,m2﹣2m﹣3),

∵PR⊥MQ,

∴∠MPR=45°,

∴MR=PR,

∴PR+QR=PR+MR=QM=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m=﹣(m﹣ 2+

∵﹣1<0,

∴当m= 时,PR+QR取最大值

②∵PR+QR的最大值为

∴SPQR= PRQR≤ PR( ﹣PR)=﹣ (PR﹣ 2+

<0,

∴当PR= 时,△PQR的面积取得最大值


【解析】(1)可先求得C点坐标,利用∠BCO=45°可求得B点坐标,代入抛物线解析式可求得a,可求得抛物线解析式;(2)可先求得Q的坐标,利用待定系数法可求得直线BC解析式,设出P点坐标,则可表示出PR、QR的长,由等腰三角形的性质可得到关于P点坐标的方程,可求得P点坐标;(3)①由题意可知PR=RM,故PR+QR=MQ,设出可用m表示出Q点坐标,则可表示出MQ的长,利用二次函数的性质可求得其最大值;②用PR表示出△PQR的面积,利用二次函数的性质可求得其最大值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网