题目内容

将两块直角三角板按如图所示方式摆放,则△ABO与△CDO的面积比为
1:3
1:3
分析:设BC=a,则通过解直角三角形得到AB=a,CD=
3
a.利用“两角法”证得△ABO∽△CDO,则根据“相似三角形的面积之比等于相似比的平方”来填空.
解答:解:如图,设BC=a.
∵在直角△ABC中,∠A=∠BCA=45°,∴AB=BC=a.
∵在直角△BCD中,∠D=30°,∴CD=
3
a.
∵∠BCA=45°,∴∠DCO=90°-∠BCA=45°,
∴∠A=∠DCO.
又∵∠AOB=∠COD,
∴△ABO∽△CDO,
S△ABO
S△CDO
=(
AB
CD
)2
=
a2
3a2
=
1
3

故答案是:1:3.
点评:本题考查了解直角三角形,相似三角形的判定与性质.三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边、对顶角等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网