题目内容

(2013•贵阳)在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).
(1)当△ABC三边分别为6、8、9时,△ABC为
锐角
锐角
三角形;当△ABC三边分别为6、8、11时,△ABC为
钝角
钝角
三角形.
(2)猜想,当a2+b2
c2时,△ABC为锐角三角形;当a2+b2
c2时,△ABC为钝角三角形.
(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.
分析:(1)利用勾股定理列式求出两直角边为6、8时的斜边的值,然后作出判断即可;
(2)根据(1)中的计算作出判断即可;
(3)根据三角形的任意两边之和大于第三边求出最长边c点的最大值,然后得到c的取值范围,然后分情况讨论即可得解.
解答:解:(1)两直角边分别为6、8时,斜边=
62+82
=10,
∴△ABC三边分别为6、8、9时,△ABC为锐角三角形;
当△ABC三边分别为6、8、11时,△ABC为钝角三角形;
故答案为:锐角;钝角;

(2)当a2+b2>c2时,△ABC为锐角三角形;
当a2+b2<c2时,△ABC为钝角三角形;
故答案为:>;<;

(3)∵c为最长边,2+4=6,
∴4≤c<6,
a2+b2=22+42=20,
①a2+b2>c2,即c2<20,0<c<2
5

∴当4≤c<2
5
时,这个三角形是锐角三角形;
②a2+b2=c2,即c2=20,c=2
5

∴当c=2
5
时,这个三角形是直角三角形;
③a2+b2<c2,即c2>20,c>2
5

∴当2
5
<c<6时,这个三角形是钝角三角形.
点评:本题考查了勾股定理,勾股定理逆定理,读懂题目信息,理解理解三角形为锐角三角形、直角三角形、钝角三角形时的三条边的数量关系是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网