题目内容

【题目】如图,在△ABC中,∠ACB=90°AC=BC,直线MN经过点C,且ADMNDBEMNE

1)当直线MN绕点C旋转到①的位置时,求证:①△ADC≌△CEB;②DE=AD+BE

2)当直线MN绕点C旋转到②的位置时,求证:DE=ADBE

3)当直线MN绕点C旋转到③的位置时,试问DEADBE具有怎样的数量关系?请直接写出这个等量关系,不需要证明.

【答案】1)①证明见解析②DE=CE+CD=AD+BE2)证明见解析(3DE=BEAD(或AD=BEDEBE=AD+DE等)

【解析】

(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,

由△ADC≌△CEB所以AD=CE,DC=BE,即可得到DE=DC+CE= AD+ BE.

(2)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,

由△ADC≌△CEB所以AD=CE,DC=BE即可得到DE =CE-CD=AD﹣BE
(3) 由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,

由△ADC≌△CEB所以AD=CE,DC=BE即可得到DE =CD-CE=BE﹣AD.

(1)①证明:∵∠ACB=90°,∠ADC=90°,∠BEC=90°

∴∠ACD+∠DAC=90°,∠ACD+∠BCE=90°,

∴∠DAC=∠BCE,

在△ADC与△CEB中,

∴△ADC≌△CEB(AAS);

②DE=CE+CD=AD+BE.理由如下:

由①知,△ADC≌△BEC,

∴AD=CE,BE=CD,

∵DE=CE+CD,

∴DE=AD+BE;

(2)证明:∵AD⊥MN于D,BE⊥MN于E.

∴∠ADC=∠BEC=∠ACB=90°,

∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.

∴∠CAD=∠BCE.

在△ADC和△CEB中,

∴△ADC≌△CEB(AAS).

∴CE=AD,CD=BE.

∴DE=CE﹣CD=AD﹣BE.

(3)解:同(2),易证△ADC≌△CEB.

∴AD=CE,BE=CD

∵CE=CD﹣ED

∴AD=BE﹣ED,即ED=BE﹣AD;

当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网