题目内容
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点C旋转到①的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到②的位置时,求证:DE=AD﹣BE;
(3)当直线MN绕点C旋转到③的位置时,试问DE、AD、BE具有怎样的数量关系?请直接写出这个等量关系,不需要证明.
![]()
【答案】(1)①证明见解析②DE=CE+CD=AD+BE(2)证明见解析(3)DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等)
【解析】
(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,
由△ADC≌△CEB所以AD=CE,DC=BE,即可得到DE=DC+CE= AD+ BE.
(2)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,
由△ADC≌△CEB所以AD=CE,DC=BE即可得到DE =CE-CD=AD﹣BE
(3) 由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,
由△ADC≌△CEB所以AD=CE,DC=BE即可得到DE =CD-CE=BE﹣AD.
(1)①证明:∵∠ACB=90°,∠ADC=90°,∠BEC=90°
∴∠ACD+∠DAC=90°,∠ACD+∠BCE=90°,
∴∠DAC=∠BCE,
在△ADC与△CEB中,
,
∴△ADC≌△CEB(AAS);
②DE=CE+CD=AD+BE.理由如下:
由①知,△ADC≌△BEC,
∴AD=CE,BE=CD,
∵DE=CE+CD,
∴DE=AD+BE;
(2)证明:∵AD⊥MN于D,BE⊥MN于E.
∴∠ADC=∠BEC=∠ACB=90°,
∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.
∴∠CAD=∠BCE.
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS).
∴CE=AD,CD=BE.
∴DE=CE﹣CD=AD﹣BE.
(3)解:同(2),易证△ADC≌△CEB.
∴AD=CE,BE=CD
∵CE=CD﹣ED
∴AD=BE﹣ED,即ED=BE﹣AD;
当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).