题目内容
(2012•宁波一模)如图1,P是锐角△ABC所在平面上一点.如果∠APB=∠BPC=∠CPA=120°,则点P就叫做△ABC费马点.
(1)当△ABC是边长为4的等边三角形时,费马点P到BC边的距离为
.
(2)若点P是△ABC的费马点,∠ABC=60°,PA=2,PC=3,则PB的值为
.
(3)如图2,在锐角△ABC外侧作等边△ACB′,连接BB′.求证:BB′过△ABC的费马点P.

(1)当△ABC是边长为4的等边三角形时,费马点P到BC边的距离为
| 2 |
| 3 |
| 3 |
| 2 |
| 3 |
| 3 |
(2)若点P是△ABC的费马点,∠ABC=60°,PA=2,PC=3,则PB的值为
| 6 |
| 6 |
(3)如图2,在锐角△ABC外侧作等边△ACB′,连接BB′.求证:BB′过△ABC的费马点P.
分析:(1)延长AP,交BC于D,由等边三角形的性质可知AD⊥BC,BD=CD=2,∠BPC=30°,利用30°角的锐角三角函数值即可求出PD的长,即费马点P到BC边的距离;
(2)由题意可得△ABP∽△BCP,所以PB2=PA•PC,即PB=
;
(3)在BB'上取点P,使∠BPC=120°,连接AP,再在PB'上截取PE=PC,连接CE.由此可以证明△PCE为正三角形,再利用正三角形的性质得到PC=CE,∠PCE=60°,∠CEB'=120°,而△ACB'为正三角形,由此也可以得到AC=B'C,∠ACB'=60°,现在根据已知的条件可以证明△ACP≌△B'CE,然后利用全等三角形的性质即可证明题目的结论.
(2)由题意可得△ABP∽△BCP,所以PB2=PA•PC,即PB=
| 6 |
(3)在BB'上取点P,使∠BPC=120°,连接AP,再在PB'上截取PE=PC,连接CE.由此可以证明△PCE为正三角形,再利用正三角形的性质得到PC=CE,∠PCE=60°,∠CEB'=120°,而△ACB'为正三角形,由此也可以得到AC=B'C,∠ACB'=60°,现在根据已知的条件可以证明△ACP≌△B'CE,然后利用全等三角形的性质即可证明题目的结论.
解答:(1)解:延长AP,交BC于D,
∵AB=AC=BC,∠APB=∠BPC=∠CPA=120°,
∴P为三角形的内心,
∴AD⊥BC,BD=CD=2,∠PBD=30°,
∴BP=
=
,
∴AP=BP=
,
∵AD=
=2
,
∴PD=AD-AP=2
-
=
,
故答案为:
.
(2)解:(1)∵∠PAB+∠PBA=180°-∠APB=60°,
∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC,
又∵∠APB=∠BPC=120°,
∴△ABP∽△BCP,
∴
=
,
∴PB2=PA•PC,即PB=
=
,
故答案为:
.
(3)证明:在BB′上取点P,使∠BPC=120°
连接AP,再在PB′上截取PE=PC,连接CE.
∵∠BPC=120°,
∴∠EPC=60°,
∴△PCE为正三角形.
∴PC=CE,∠PCE=60°,∠CEB’=120°
∵△ACB′为正三角形,
∴AC=B′C,∠ACB′=60°
∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,∠PCA=∠ECB′,
∴△ACP≌△B′CE,
∴∠APC=∠B′CE=120°,PA=EB′,
∴∠APB=∠APC=∠BPC=120°,
∴P为△ABC的费马点.
∴BB′过△ABC的费马点P.
∵AB=AC=BC,∠APB=∠BPC=∠CPA=120°,
∴P为三角形的内心,
∴AD⊥BC,BD=CD=2,∠PBD=30°,
∴BP=
| 2 |
| cos30° |
4
| ||
| 3 |
∴AP=BP=
4
| ||
| 3 |
∵AD=
| AB2-BD2 |
| 3 |
∴PD=AD-AP=2
| 3 |
4
| ||
| 3 |
| 2 |
| 3 |
| 3 |
故答案为:
| 2 |
| 3 |
| 3 |
(2)解:(1)∵∠PAB+∠PBA=180°-∠APB=60°,
∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC,
又∵∠APB=∠BPC=120°,
∴△ABP∽△BCP,
∴
| PA |
| PB |
| PB |
| PC |
∴PB2=PA•PC,即PB=
| 2×3 |
| 6 |
故答案为:
| 6 |
(3)证明:在BB′上取点P,使∠BPC=120°
连接AP,再在PB′上截取PE=PC,连接CE.
∵∠BPC=120°,
∴∠EPC=60°,
∴△PCE为正三角形.
∴PC=CE,∠PCE=60°,∠CEB’=120°
∵△ACB′为正三角形,
∴AC=B′C,∠ACB′=60°
∴∠PCA+∠ACE=∠ACE+∠ECB′=60°,∠PCA=∠ECB′,
∴△ACP≌△B′CE,
∴∠APC=∠B′CE=120°,PA=EB′,
∴∠APB=∠APC=∠BPC=120°,
∴P为△ABC的费马点.
∴BB′过△ABC的费马点P.
点评:此题考查了等腰三角形与等边三角形的性质及三角形内角和为180°等知识;此类已知三角形边之间的关系求角的度数的题,一般是利用等腰(等边)三角形的性质得出有关角的度数,进而求出所求角的度数.
练习册系列答案
相关题目