题目内容
(3分)如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4,则EF的长是( )
A. B. C.6 D.10
(1)填空:= ;
= ;
= .
(2)猜想:= (其中n为正整数,且).
(3)利用(2)猜想的结论计算:.
如图,把RI△ABC放在直角坐标系内,其中∠CAB=90°, BC=5.点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线上时,线段BC扫过的面积为( )
A.4 B.8 C.16 D.
(6分)先化简,再从1,2,3三个数中选一个合适的数作为x的值,代入求值.
(3分)若点P(﹣1,2)在反比例函数的图象上,则k= .
(3分)如图所示物体的主视图是( )
A. B. C. D.
(8分)已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.
(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;
(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?
(2分)已知二次函数,当x>1时,y随x的增大而增大,而m的取值范围是( )
(4分)观察下列图形的构成规律,依照此规律,第10个图形中共有______个“•”.