题目内容
如图,AB是⊙O的直径,CD为⊙O的弦,已知AB⊥CD,垂足为E,点M在⊙O上,MD恰好经过圆心O,连接MB.
(1)若CD=16,BE=4,求⊙O的直径;
(2)若∠M=∠D,求∠D的度数.
在生活和生产中,经常用两个钉子就可以把木条固定在墙上,这一现象可以用 这一数学知识来解释.
如图,四边形ABCD的对角线AC与BD相交于点O,∠1=∠2,∠3=∠4.
求证:(1) BC=DC; (2) AC⊥BD.
如图,有一张直角三角形纸片,两直角边AC=5,BC=10,将△ABC折叠,使点B与点A重合,折痕为EF,则CE的长为( )
A. B. C. D.
【发现】如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)
【思考】
如图②,如果∠ACB=∠ADB=(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?
【证明】
经过一番思考,小明同学认为,若要证明点D仍然在经过A,B,C三点的圆上,只要证明出,点D既不在该圆外,也不在该圆内,即可得出点D还在经过A,B,C三点的圆上的结论.
小明同学证明出了点D不在圆外:
请你根据上述过程,画出图形,并证明点D也不在圆内.
如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=,则∠ACD= 度.
下列各式:,,,,中,是分式的为________.
如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3= .