题目内容
如图,在矩形ABCD中,AB=1,AD=2,将AD绕点A顺时针旋转,当点D落在BC上点D′时,则∠DAD′=__________度.
已知a2+3ab+b2=0(a≠0,b≠0),则代数式 + 的值等于________.
如图所示,已知O为AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.(10分)
与算式的运算结果相等的是
A. B. C. D.
已知二次函数的图象与y轴相交于点(0,3),并经过点(-2,5),它的对称轴是x=1,求这个函数的解析式,并写出这个函数图象的顶点坐标.
二次函数y=+3,当x 时,函数值y随x的增大而增大.
某公司2007年缴税60万元,2009年缴税80万元,设该公司这两年缴税的年平均增长率为x,
则得到方程( )
A.60+2x=80
B.60(x+1)=80
C.60=80
D.60=80
如果 ,那么的值是( )
A.- 2015 B.2015 C.- 1 D.1
如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.
(1)求A、C两点的坐标;
(2)连接PA,用含t的代数式表示△POA的面积;
(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.