题目内容
【题目】我校初三年级开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,如果购买3张两人学习桌,1张三人学习桌需220元;如果购买2张两人学习桌,3张三人学习桌需310元.
(1)求两人学习桌和三人学习桌的单价;
(2)学校欲投入资金不超过6000元,购买两种学习桌共98张,以至少满足248名学生的需求,设购买两人学习桌x张,购买两人学习桌和三人学习桌的总费用为W 元,求出W与x的函数关系式;求出所有的购买方案.
【答案】(1)两人学习桌和三人学习桌的单价分别为50元,70元。(2)W=﹣20x+6860,有购买方案为:购买两人桌43张,购买三人桌58张;购买两人桌44张,购买三人桌54张;购买两人桌45张,购买三人桌53张;购买两人桌46张,购买三人桌52张
【解析】解:(1)设每张两人学习桌单价为a元和每张三人学习桌单价为b元,
根据题意得:
,解得
。
答:两人学习桌和三人学习桌的单价分别为50元,70元。
(2)设购买两人学习桌x张,则购买3人学习桌(98﹣x)张,购买两人学习桌和三人学习桌的总费用为W 元,
则W与x的函数关系式为:W=50x+70(98﹣x)=﹣20x+6860;
根据题意得:
,解得43≤x≤46。
∵x为整数,∴x=43,44,45,46。
∴所有购买方案为:购买两人桌43张,购买三人桌58张;
购买两人桌44张,购买三人桌54张;
购买两人桌45张,购买三人桌53张;
购买两人桌46张,购买三人桌52张。
(1)设每张两人学习桌单价为a元和每张三人学习桌单价为b元,根据如果购买3张两人学习桌,1张三人学习桌需220元;如果购买2张两人学习桌,3张三人学习桌需310元分别得出等式方程,组成方程组求出即可。
(2)根据购买两种学习桌共98张,设购买两人学习桌x张,则购买3人学习桌(98﹣x)张,根据以至少满足248名学生的需求,以及学校欲投入资金不超过6000元得出不等式,进而求出即可。