题目内容

17.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,若DE=5,AE=8,则BC的长度为2$\sqrt{10}$.

分析 由BE⊥AC,D为AB中点,DE=5,根据直角三角形斜边的中线等于斜边的一半,即可求得AB的长,然后由勾股定理求得BC的长.

解答 解:∵BE⊥AC,
∴∠AEB=90°,
∵D为AB中点,
∴AB=2DE=2×5=10,
∵AE=8,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=6.
∴BC=$\sqrt{B{E}^{2}+C{E}^{2}}$=$\sqrt{{6}^{2}+{2}^{2}}$=2$\sqrt{10}$,
故答案为:2$\sqrt{10}$.

点评 此题考查了直角三角形斜边上的中线的性质以及勾股定理.注意掌握直角三角形斜边的中线等于斜边的一半定理的应用是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网