题目内容
【题目】如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足
.D为线段AC的中点.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为
,
.
![]()
(1)则A点的坐标为 ;点C的坐标为 .D点的坐标为 .
(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=S△ODQ,若存在,请求出t的值;若不存在,请说明理由.
(3)点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,
的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.
【答案】(1)(0,4),(2,0),(1,2);(2)存在,t=1;(3)
的值不变,其值为2.
【解析】
(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案;
(2)先得出CP=t,OP=2﹣t,OQ=2t,AQ=4﹣2t,再根据S△ODP=S△ODQ,列出关于t的方程,求得t的值即可;
(3)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入
进行计算即可.
解:(1)∵
.
∴a﹣2b=0,b﹣2=0,
解得a=4,b=2,
∴A(0,4),C(2,0);
∴x=
=1,y=
=2,
∴D(1,2).
故答案为(0,4),(2,0),(1,2).
(2)如图1中,
![]()
由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,
∴0<t≤2时,点Q在线段AO上,
即 CP=t,OP=2﹣t,OQ=2t,AQ=4﹣2t,
∴S△DOP=
OPyD=
(2﹣t)×2=2﹣t,S△DOQ=
OQxD=
×2t×1=t,
∵S△ODP=S△ODQ,
∴2﹣t=t,
∴t=1;
(3)
的值不变,其值为2.理由如下:如图2中,
![]()
∵∠
又∵∠1=∠2,∠3=∠FCO,
∴∠GOC+∠ACO=180°,
∴OG∥AC,
∴∠1=∠CAO,
∴∠OEC=∠CAO+∠4=∠1+∠4,
如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,
∴∠PHO=∠GOF=∠1+∠2,
∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,
∴
=
,
=
,
=2.
【题目】老王有一批货物要从A地运往B地准备租用某汽车运输公司的甲、乙两种货车若干辆,经了解,这两种货车两次运载货物的情况如下表所示:(每次都是满载)
第一次 | 第二次 | |
甲 | 2辆 | 5辆 |
乙 | 3辆 | 6辆 |
累计货运量 | 15.5t | 35t |
(1)甲、乙两种货车每辆各可运货物多少吨?
(2)现老王租用该公司甲货车3辆,乙货车5辆,刚好将这批货物运完(满载)若每吨货的运费为30元,则老王应付运费多少元?