题目内容

如图,△ABC中,∠ABC=60°,AD,CE分别为BC,AB上的高,F为AC的中点,试判断△DEF的形状,并证明你的结论.

解:连接EF,△DEF为等边三角形,由∠ABC=60°,
易得:
∴△BDE∽△BAC,

∴DE=AC.
又∵F为中点,
∴在Rt△ADC中,DF=AC,在Rt△ACE中,EF=AC.
所以DE=DF=EF.
即:△DEF为等边三角形.
分析:已知∠ABC=60°,则根据三角函数求得,又因为有公共角∠B,从而得到△BDE∽△BAC,根据对应边成比例可得到DE=AC,同理可求得DF=AC,EF=AC,所以DE=DF=EF,即△DEF为等边三角形.
点评:此题主要考查学生对相似三角形的判定和性质的应用,以及等边三角形的判定方法的理解及运用能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网