题目内容
计算:(﹣)﹣2﹣|﹣1+|+2sin60°+(π﹣4)0.
如图,在菱形ABCD中,AB=10,对角线AC=12.若过点A作AE⊥CD,垂足为E,则AE的长为( )
A.9 B. C. D.9.5
如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连结AP并延长AP交CD于F点,连接BP,交CE于点H.
(1)若∠PBA:∠PBC=1:2,判断△PBC的形状并说明;
(2)求证:四边形AECF为平行四边形.
如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,那么∠EFG的度数为( )
A.35° B.40° C.70° D.140°
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=8,AD=6,AE=6,求AF的长.
因式分【解析】x3﹣9x= .
关于反比例函数y=﹣,下列说法正确的是( )
A.图象过(1,2)点
B.图象在第一、三象限
C.当x>0时,y随x的增大而减小
D.当x<0时,y随x的增大而增大
如图,在平行四边形ABCD中,以A为圆心,AB为半径画弧,交AD于F,再分别以B、F为圆心,大于BF的长为半径画弧,两弧相交于点G,若BF=6,AB=5,则AE的长为( )
A.11 B.6 C.8 D.10
甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差=,平均成绩=8.5.
(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?
(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.
S2=.