题目内容

作业宝如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;
(2)五边形ACBB′C′的周长为______;
(3)四边形ACBB′的面积为______;
(4)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为______.

解:(1)如图:△AB′C′即为所求;

(2)∵AC′=AC==2,BC=BC′==,BB′=2,
∴五边形ACBB′C′的周长为:2×2+2×+2=4+2+2;
故答案为:4+2+2;

(3)如图,S△ABC=S梯形AEFB-S△AEC-S△BCF=×(1+2)×4-×2×2-×2×1=3,S△ABB′=×2×4=4,
∴S四边形ACBB′=S△ABC+S△ABB′=3+4=7.
故答案为:7;

(4)如图,点B′是点B关于l的对称点,连接B′C,交l于点P,
此时PB+PC的长最短,
∴PB=PB′,
∴PB+PC=PB′+PC=B′C==
故答案为:
分析:(1)根据轴对称的性质,可作出△ABC关于直线l成轴对称的△AB′C′;
(2)由勾股定理即可求得AC与BC的长,由对称性,可求得其它边长,继而求得答案;
(3)由S△ABC=S梯形AEFB-S△AEC-S△BCF,可求得△ABC的面积,易求得△ABB′的面积,继而求得答案;
(4)由点B′是点B关于l的对称点,连接B′C,交l于点P,然后由B′C的长即可.
点评:此题考查了轴对称变换、三角形的面积以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网