题目内容
如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是( )A.110°
B.120°
C.140°
D.150°
【答案】分析:由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG.
解答:解:∵AD∥BC,
∴∠DEF=∠EFB=20°,
在图b中∠GFC=180°-2∠EFG=140°,
在图c中∠CFE=∠GFC-∠EFG=120°,
故选B.
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
解答:解:∵AD∥BC,
∴∠DEF=∠EFB=20°,
在图b中∠GFC=180°-2∠EFG=140°,
在图c中∠CFE=∠GFC-∠EFG=120°,
故选B.
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
练习册系列答案
相关题目
如图a是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的tan∠DHF的度数是( )

A、
| ||||
B、
| ||||
| C、1 | ||||
D、
|