题目内容
计算:(1)﹣12018+()﹣2﹣(3.14﹣π)0
(2)(2x3y)3•(﹣7xy2)÷(14x4y3)
到原点的距离不大于3的整数有________ 个
今年暑假,小丽爸爸的同事送给她爸爸一张北京故宫的门票,她和哥哥两人都很想去参观,可门票只有一张.读九年级的哥哥想了一个办法,他拿了八张扑克牌,将数字为1,2,3,5的四张牌给小丽,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小利哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌上的数字相加,如果和为偶数,和小丽去;如果和为奇数,则哥哥去.
(1)请用画树状图或列表的方法求小丽去北京故宫参观的概率;
(2)哥哥设计的游戏规则公平吗?请说明理由.
在四张完全相同的卡片上,分别画有矩形、菱形、等腰三角形、两条相交直线,若从中随机抽取一张,则抽取的卡片上的图形是轴对称图形但不是中心对称图形的概率是( )
A. B. C. D. 1
“十一”期间,小明和父母一起开车到距家200千米的景点旅游,出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱油箱余油量为30升(假设行驶过程中汽车的耗油量是均匀的).
(1)求该车平均每千米的耗油量,并写出行驶路程x(千米)与剩余油量Q(升)的关系式;
(2)当x=280(千米)时,求剩余油量Q的值;
(3)当油箱中剩余油量低于3升时,汽车将自动报警,如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.
在数学兴趣小组中某一组有女生4名,男生2名,随机指定一人为组长恰好是女生的概率是_____.
如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A. ∠BCA=∠F B. BC∥EF C. ∠A=∠EDF D. AD=CF
某学校为了解本校2400名学生对某次足球赛的关注程度,以利于做好教育和引导工作,随机抽取了本校内的六、七、八、九四个年级部分学生进行调查,按“各年级被抽取人数”与“关注程度”,分别绘制了条形统计图(图①)、扇形统计图(图②)和折线统计图(图③).
(1)本次共随机抽查了________名学生,根据信息补全图①中条形统计图,图②中八年级所对应扇形的圆心角的度数为________;
(2)如果把“特别关注”“一般关注”“偶尔关注”都看成关注,那么全校关注足球赛的学生大约有多少名?
(3)①根据上面的统计结果,谈谈你对该校学生对足球关注的现状的看法及建议;
②如果要了解中小学生对校园足球的关注情况,你认为应该如何进行抽样?