题目内容
如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB= .
如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)
如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,阴影部分的面积为______cm2.
(题文)(1)(问题发现)
如图1,在Rt△ABC中,AB=AC=2,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,则线段BE与AF的数量关系为
(2)(拓展研究)
在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;
(3)(问题发现)
当正方形CDEF旋转到B,E,F三点共线时候,直接写出线段AF的长.
解方程:x2﹣3x+2=0.
若k>4,则关于x的一元二次方程x2+4x+k=0的根的情况是( )
A. 没有实数根 B. 有两个相等的实数根
C. 有两个不相等的实数根 D. 无法判断
如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=( )
A. B. C. D.
如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中能使△ABC≌△DEF的条件共有( )
A. 1组 B. 2组 C. 3组 D. 4组
如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49;②x-y=2;③2xy+4=49;④x+y=9.其中说法正确的是( )
A. ①② B. ①②③ C. ①②④ D. ①②③④