题目内容
已知计算结果是,求常数A、B的值.
如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件: ,使四边形ABCD为平行四边形(不添加任何辅助线).
如图,已知点A从点(1,0)出发,以1个单位长度/秒的速度沿x轴向正方向运动,以O、A为顶点作菱形OABC,使点B、C在第一象限内,且∠AOC=60°,点P的坐标为(0,3),设点A运动了t秒,求:
(1)点C的坐标(用含t的代数式表示);
(2)点A在运动过程中,当t为何值时,使得△OCP为等腰三角形?
顺次连接矩形的四边形中点所得的四边形一定是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
【观察发现】
如图1,四边形ABCD和四边形AEFG都是正方形,且点E在边AB上,连接DE和BG,猜想线段DE与BG的数量关系,以及直线DE与直线BG的位置关系.(只要求写出结论,不必说出理由)
【深入探究】
如图2,将图1中正方形AEFG绕点A逆时针旋转一定的角度,其他条件与观察发现中的条件相同,观察发现中的结论是否还成立?请根据图2加以说明.
【拓展应用】
如图3,直线l上有两个动点A、B,直线l外有一点O,连接OA,OB,OA,OB长分别为、4,以线段AB为边在l的另一侧作正方形ABCD,连接OD.随着动点A、B的移动,线段OD的长也会发生变化,在变化过程中,线段OD的长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α= .
一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为 .
等腰三角形一腰上的高与另一腰的夹角为30°,腰长为6,则其底边上的高是 .
如图,EF∥AD,∠1=∠2.求证:DG∥AB.