题目内容
如图所示的工件,其俯视图是( )
A. B. C. D.
某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有多少人?
(2)在扇形统计图中,“乒乓球”的百分比为多少?
(3)如果学校有800名学生,估计全校学生中有多少人喜欢篮球项目?
(4)请将条形统计图补充完整.
(5)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请运用列表或树状图求出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
我国南海资源丰富,其面积约为3 500 000平方千米,相当于我国渤海、黄海和东海总面积的3倍.其中3 500 000用科学记数法表示为_____.
矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为 .
【答案】3或6
【解析】试题分析:
由题意可知有两种情况,见图1与图2;
图1:当点F在对角线AC上时,∠EFC=90°,
∵∠AFE=∠B=90°,∠EFC=90°,
∴点A、F、C共线,
∵矩形ABCD的边AD=8,
∴BC=AD=8,
在Rt△ABC中,AC==10,
设BE=x,则CE=BC﹣BE=8﹣x,
由翻折的性质得,AF=AB=6,EF=BE=x,
∴CF=AC﹣AF=10﹣6=4,
在Rt△CEF中,EF2+CF2=CE2,
即x2+42=(8﹣x)2,
解得x=3,
即BE=3;
图2:当点F落在AD边上时,∠CEF=90°,
由翻折的性质得,∠AEB=∠AEF=×90°=45°,
∴四边形ABEF是正方形,
∴BE=AB=6,
综上所述,BE的长为3或6.
故答案为:3或6.
考点:1、轴对称(翻折变换);2、勾股定理
【题型】填空题【结束】15
计算:()﹣2﹣+(﹣4)0﹣cos45°.
某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份的月平均增长率为x,则下列方程正确的是( )
A. (1﹣20%)(1+x)2=1+15% B. (1+15%%)(1+x)2=1﹣20%
C. 2(1﹣20%)(1+x)=1+15% D. 2(1+15%)(1+x)=1﹣20%
下列计算结果正确的是( )
A. += B. 3﹣=3 C. ×= D. =5
如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是________.
如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的平行四边形AEMG的面积S1与平行四边形HCFM的面积S2的大小关系是( )
A. S1>S2 B. S1=S2 C. S1<S2 D. 2S1=S2
有9张卡片,每张卡片上分别写有不同的从1到9的一个自然数,从中任意抽出一张卡片,则抽到的卡片上的数是3的倍数的概率是_____.