题目内容
如图,在直角坐标平面上,点A、B在x轴上(A点在B点左侧),点C在y轴正半轴上,若A(-1,0),OB=3OA,且tan∠CAO=2.
(1)求点B、C的坐标;
(2)求经过点A、B、C三点的抛物线解析式;
(3)P是(2)中所求抛物线的顶点,设Q是此抛物线上一点,若△ABQ与△ABP的面积相等,求Q点的坐标.
∴B(3,0).
又∵tan∠CAO=2,点C在y轴正半轴上,
∴
∴C(0,2)
综上所述,点B、C的坐标分别是:(3,0),(0,2);
(2)∵该抛物线与x轴的两个交点坐标是:A(-1,0),B(3,0),
∴设过点A、B、C的抛物线解析式为y=a(x+1)(x-3)(a≠0).
把点C的坐标代入,得
2=a(0+1)(0-3),
解得,a=-
则该抛物线的解析式为:y=-
(3)由(2)中抛物线解析式得到:y=-
∵△ABQ与△ABP的面积相等,且点Q是抛物线上的一点
∴点Q与点P到x轴的距离相等,
∴点Q是直线y=±
①当y=
②当y=-
解得,x1=1+2
综上所述,符合条件的点Q的坐标是:(1,
分析:(1)根据已知条件“A(-1,0),OB=3OA,且tan∠CAO=2”易求点B、C的坐标;
(2)设抛物线解析式为y=a(x+1)(x-3)(a≠0).然后把点C的坐标分别代入,求得a的值;
(3)根据“同底等高的两个三角形的面积相等”可知,点Q是直线y=与抛物线的交点.
点评:本题考查了二次函数综合题.其中涉及到了坐标与图形的性质,锐角三角函数的定义,待定系数法求二次函数的解析式,以及一次函数与抛物线的交点问题.解答(2)题时,因为已知抛物线与x轴的两个交点坐标,所以设交点式关系式,可以减少繁琐的计算过程.
练习册系列答案
相关题目