题目内容
以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是( )
A. B.
C. D.
等于( )
A. 4 B. ±4 C. -4 D. ±2
如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为( )
A. 60° B. 80° C. 75° D. 70°
如图,△ABC中,AB=AC,BC=4,点E为中线AD上一点,已知△ABE和△CDE的面积分别为2和3,则AD的长度为 _________ 。
如图,以AC为斜边作Rt△ABC与Rt△ACD,以AB,BC,AD,DC为直径分别作半圆,它们的面积分别为S1,S2,S3,S4,若, ,则S4的值是( )
A. 3 B. 4 C. 5 D. 6
已知二次函数y=x2﹣(2k+1)x+k2+k(k>0)
(1)当k=时,将这个二次函数的解析式写成顶点式;
(2)求证:关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根.
计算
(1)()﹣2+|2﹣6|﹣;
(2)解方程组: .
如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值.
20142-2013×2015的计算结果是_____.