题目内容
如图,直线1、2、3分别过正方形ABCD的三个顶点A,B,D,且相互平行,若1与2的距离为1,2与3的距离为1,则该正方形的面积是 .
如图,用不等式表示数轴上所示的解集,正确的是( )
A.<-1 或≥3 B.≤-1或>3
C.-1≤<3 D.-1<≤3
如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为______.
如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)若∠1=70°,求∠MKN的度数.
(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由.
(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.
先化简,再求值: ,其中.
若点(3,1)在双曲线y=上,则k=______________.
如图,在数轴上表示实数的点可能是( )
A.点 B.点 C.点 D.点
如图,∠1是Rt△ABC的一个外角,直线DE∥BC,分别交边AB、AC于点D、E,∠1=120°,则∠2的度数是______.
如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.
(1)现随机转动转盘一次,停止后,指针指向2的概率为 .
(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.
游戏规则:随机转动转盘两次,停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.