题目内容
使分式的值为0,这时x=__________.
如图,A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.
(1)求∠ADC的度数;
(2)求A、D两地的距离.
对于实数、,定义一种新运算“”为:,这里等式右边是实数运算.例如:.则方程的解是__________.
如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形?
如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为 ___________ cm.
当1<a<2时,代数式的值是( )
A. -1 B. 1 C. 2a-3 D. 3-2a
在ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.
(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.
①求证:BE=BF;
②请判断△AGC的形状,并说明理由.
(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,判断△AGC的形状.(直接写出结论不必证明)
如图,已知A、B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C.过点 P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P 运动的时间为t,则S关于t的函数图象大致为( )
A. B. C. D.
已知三角形的两边分别是和,现从长度分别为、、、、五根小木棒中随机抽一根,抽到的木棒能作为该三角形第三边的概率是______________.