题目内容
黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为( )
A. (11+t)℃ B. (11﹣t)℃ C. (t﹣11)℃ D. (﹣t﹣11)℃
如图,已知⊙O的半径OA的长为2,点B是⊙O上的动点,以AB为半径的⊙A与线段OB相交于点C,AC的延长线与⊙O相交于点D.设线段AB的长为x,线段OC的长为y.
(1)求y关于x的函数解析式,并写出定义域;
(2)当四边形ABDO是梯形时,求线段OC的长.
如图,点A是反比例函数的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,
连接AC,BC.若△ABC的面积为3,则k的值是( )
A. 3 B. ﹣3 C. 6 D. ﹣6
若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为_____.
单项式的系数和次数分别是( )
A. ﹣5和9 B. ﹣5和4 C. 和4 D. 和9
在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);
(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.
函数y=kx2-6x+3的图象与x轴有公共点,则k的取值范围是______;
如图,在平面直角坐标系中,已知抛物线的顶点为,与轴相交于点,先将抛物线沿轴翻折,再向右平移个单位长度后得到抛物线直线经过, 两点.
()结合图象,直接写出不等式的解集.
()若抛物线的顶点与点关于原点对称,求的值及抛物线的解析式.
()若直线沿轴向右平移个单位长度后,与()中的抛物线存在公共点,求代数式的最大值.
张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示。汽车到达乙地时油箱中还余油_______________升。