题目内容

12.如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.
(1)求证:EF是⊙O的切线;
(2)若DE=1,BC=2,求劣弧$\widehat{BC}$的长l.

分析 (1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;
(2)连接OD,DC,根据角平分线的定义得到∠DAC=∠OAC,根据三角函数的定义得到∠ECD=30°,得到∠OCD=60°,得到∠BOC=∠COD=60°,OC=2,于是得到结论.

解答 (1)证明:连接OC,
∵OA=OC,
∴∠OAC=∠DAC,∴∠DAC=∠OCA,
∴AD∥OC,
∵∠AEC=90°,∴∠OCF=∠AEC=90°,
∴EF是⊙O的切线;
(2)连接OD,DC,
∵∠DAC=$\frac{1}{2}∠$DOC,∠OAC=$\frac{1}{2}∠$BOC,
∴∠DAC=∠OAC,
∵ED=1,DC=2,
∴sin∠ECD=$\frac{DE}{DC}=\frac{1}{2}$,
∴∠ECD=30°,
∴∠OCD=60°,
∵OC=OD,
∴△DOC是等边三角形,
∴∠BOC=∠COD=60°,OC=2,
∴l=$\frac{60π×2}{180}$=$\frac{2}{3}$π.

点评 本题考查了切线的判定和性质,等边三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网