题目内容
已知y=y1+y2,y1与x成正比例,y2与x-1成正比例,并且当x=2时,y=6;当x=3时,y=5,求y与x的函数关系式.
如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE 沿AE折叠,点B落在点F处,连接FC,则tan∠ECF = ( )
A. B. C. D.
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)求证:AD⊥DC;
(2)若AD=2,AC=,求AB的长.
如图所示,△ABC∽△ACD,且AB=10cm,AC=8cm,则AD的长是 ( )
A.6.4cm B.6cm C.2cm D.4cm
如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE的是( )
A. B. C.∠B=∠D D.∠C=∠AED
已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数关系式为 ,自变量x的取值范围是 .
如图的坐标平面上有一正五边形ABCDE,其中C、D两点坐标分别为(1,0)、(2,0).若在没有滑动的情况下,将此正五边形沿着x轴向右滚动,则滚动过程中,下列哪个点会经过点(76,0)?( )
A.A B.B C.C D.D
如图,把一个等边三角形纸片,剪掉一个角后,所得到一个四边形;则图形中∠1+∠2的度数是 .
如图,在数轴上点A、B、C表示的数分别为-2,1,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.
(1)则AB= ,BC= ,AC= ;
(2)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动。请问:BC-AB的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,请求其值;
(3)由第(1)小题可以发现,AB+BC=AC.若点C以每秒3个单位长度的速度向左运动,同时,点A和点B分别以每秒1个单位长度和每秒2个单位长度的速度向右运动.请问:当运动时间t在0~1秒之间时, AB、BC、AC之间是否存在类似于(1)的数量关系?请说明理由.