题目内容
已知对于任意正整数n,都有a1+a2+…+an=n3,则| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| a100-1 |
分析:先根据n≥2时,a1+a2+…+an-1+an=n3,a1+a2+…+an-1=(n-1)3,把两式相减,得出an的表达式,再根据
=
(
-
)进行解答即可.
| 1 |
| an-1 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
解答:解:∵当n≥2时,有a1+a2+…+an-1+an=n3,a1+a2+…+an-1=(n-1)3,两式相减,得an=3n2-3n+1,
∴
=
=
(
-
),
∴
+
+…+
,
=
(1-
)+
(
-
)+…+
(
-
),
=
(1-
),
=
.
故答案为:
.
∴
| 1 |
| an-1 |
| 1 |
| 3n(n-1) |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| a100-1 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 99 |
| 1 |
| 100 |
=
| 1 |
| 3 |
| 1 |
| 100 |
=
| 33 |
| 100 |
故答案为:
| 33 |
| 100 |
点评:本题考查的是部分分式,属规律性题目,能根据题意得出
=
(
-
)是解答此题的关键.
| 1 |
| an-1 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
练习册系列答案
相关题目