题目内容
已知扇形的圆心角为,所对的弧长为,则此扇形的面积是 .
;
东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划.某校决定对学生感兴趣的球类项目(A:足球, B:篮球, C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).
(1)将统计图补充完整;
(2)求出该班学生人数;
(3)若该校共有学生3500名,请估计有多少人选修足球?
(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
关于的不等式组的解集为,则的值为 。
如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的边长分别为,点A、D、G在轴上,坐标原点O为AD的中点,抛物线过C、F两点,连接FD并延长交抛物线于点M。
(1)若,求m和b的值;
(2)求的值;
(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由。
如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为米,则可以列出关于的方程是 ( )
A. B.
C. D.
解方程:
已知点A 在抛物线的图象上,设点A关于抛物线对称轴对称的点为B.
(1)求点B的坐标;
(2)求度数.
已知点P是半径为1的⊙O外一点,PA切⊙O于点A,且PA=1, AB是⊙O的弦,AB=,连接PB,则PB= .
计算的结果是( )
A. B. C. D.