题目内容
化简的结果是( )
A.x B.x-1 C.-x D.x+1
如图,直线y=x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=.
(1)求k的值;
(2)设点N(1,a)是反比例函数y=(x>0)图象上的点,在y轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.
如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
A.2 B.4 C. D.2
如图,已知直线与双曲线相交于A、B两点,与x轴,y轴分别相交于D、C两点,若AB=5,则k= .
如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )
下列运算正确的是( )
A.a2•a3=a6 B. m6÷m2=m3 C.(x2)3=x6 D.6a-4a=2
利用一面长18米的墙,另三边用30米长的篱笆围成一个面积为100平方米的矩形场地,求矩形的长和宽.
下列调查中,适宜采用普查方式的是
A.了解某校初三一班的体育学考成绩 B.了解某种节能灯的使用寿命
C.了解我国青年人喜欢的电视节目 D.了解全国九年级学生身高的现状
如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为( )
A.1 B.2 C.3 D.4