题目内容

如图,已知∠1=∠BDC,∠2+∠3=180°.
(1)请你判断AD与EC的位置关系,并说明理由;
(2)若DA平分∠BDC,CE⊥AE于E,∠1=70°,试求∠FAB的度数.
考点:平行线的判定与性质
专题:
分析:(1)根据平行线的性质推出AB∥CD,推出∠2=∠ADC,求出∠ADC+∠3=180°,根据平行线的判定推出即可;    
(2)求出∠ADC度数,求出∠2=∠ADC=35°,∠FAD=∠AEC=90°,代入∠FAB=∠FAD-∠2求出即可.
解答:(1)解:AD∥EC,
理由是:∵∠1=∠BDC,
∴AB∥CD,
∴∠2=∠ADC,
又∵∠2+∠3=180°,
∴∠ADC+∠3=180°,
∴AD∥EC.                

(2)解:∵DA平分∠BDC,
∴∠ADC=
1
2
∠BDC=
1
2
∠1=
1
2
×70°=35°

∴∠2=∠ADC=35°,
∵CE⊥AE,AD∥EC,
∴∠FAD=∠AEC=90°,
∴∠FAB=∠FAD-∠2=90°-35°=55°.
点评:本题考查了平行线的性质和判定,角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网