题目内容
把直线
图象向________单位长度可得到
的图象.
上平移5个
分析:直接根据“上加下减”的原则进行解答即可.
解答:由“上加下减”的原则可知,把直线y=
x的图象向上平移5个单位即可得到
的图象.
故答案为:上平移5个.
点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
分析:直接根据“上加下减”的原则进行解答即可.
解答:由“上加下减”的原则可知,把直线y=
故答案为:上平移5个.
点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
练习册系列答案
相关题目
在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.
(1)实验操作:
在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点
的坐标填写在表格中:
(2)观察发现:
任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数 的图象上;平移2次后在函数 的图象上…由此我们知道,平移n次后在函数 的图象上.(请填写相应的解析式)
(3)探索运用:
点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.
(1)实验操作:
在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点
| P从点O出发平移次数 | 可能到达的点的坐标 |
| 1次 | (0,2),(1,0) |
| 2次 | |
| 3次 |
任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数
(3)探索运用:
点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.
在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.
(1)实验操作:
在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点
的坐标填写在表格中:
| P从点O出发平移次数 | 可能到达的点的坐标 |
| 1次 | (0,2),(1,0) |
| 2次 | |
| 3次 |
(2)观察发现:
任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数______的图象上;平移2次后在函数______的图象上…由此我们知道,平移n次后在函数______的图象上.(请填写相应的解析式)
(3)探索运用:
点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.
在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.
(1)实验操作:
在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:
(2)观察发现:
任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数______的图象上;平移2次后在函数______的图象上…由此我们知道,平移n次后在函数______的图象上.(请填写相应的解析式)
(3)探索运用:
点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.
(1)实验操作:
在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:
| P从点O出发平移次数 | 可能到达的点的坐标 |
| 1次 | (0,2),(1,0) |
| 2次 | |
| 3次 |
任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数______的图象上;平移2次后在函数______的图象上…由此我们知道,平移n次后在函数______的图象上.(请填写相应的解析式)
(3)探索运用:
点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.