题目内容
| m1+m2 |
| m |
| 5 |
| 4 |
分析:设BC=a,AC=b,由∠1=∠2=∠3,得到△ABC∽△EBD∽△DAC,通过相似比得到DC=
,BD=BC-DC=a-
=
,则
=
=
,
=
=
,得到∴
=
+
=-(
-
)2+
.即可得到结论.
| b2 |
| a |
| b2 |
| a |
| a2-b2 |
| a |
| m1 |
| m |
| BD |
| BC |
| a2-b2 |
| a2 |
| m2 |
| m |
| AC |
| BC |
| b |
| a |
| m1+m2 |
| m |
| a2-b2 |
| a2 |
| b |
| a |
| b |
| a |
| 1 |
| 2 |
| 5 |
| 4 |
解答:解:设BC=a,AC=b,∵∠1=∠2=∠3,
∴△ABC∽△EBD∽△DAC,
∴
=
,
∴DC=
,BD=BC-DC=a-
=
,
∵
=
=
,
=
=
,
∴
=
+
=-(
-
)2+
≤
.
∴△ABC∽△EBD∽△DAC,
∴
| DC |
| AC |
| AC |
| BC |
∴DC=
| b2 |
| a |
| b2 |
| a |
| a2-b2 |
| a |
∵
| m1 |
| m |
| BD |
| BC |
| a2-b2 |
| a2 |
| m2 |
| m |
| AC |
| BC |
| b |
| a |
∴
| m1+m2 |
| m |
| a2-b2 |
| a2 |
| b |
| a |
| b |
| a |
| 1 |
| 2 |
| 5 |
| 4 |
| 5 |
| 4 |
点评:本题考查了三角形相似的判定与性质:有两个角对应相等的两个三角形相似;相似三角形的对应边的比相等,周长的比等于相似比.也考查了用配方法求最值.
练习册系列答案
相关题目