题目内容
平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是( )
A.75° B.70° C.65° D.60°
如图,抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC的外接圆⊙H与直线y=﹣x相交于点D.
(1)若抛物线与y轴的交点坐标为(0,2),求m的值;
(2)求证:⊙H与直线y=1相切;
(3)若DE=2EC,求⊙H的半径.
如图,直线m∥n,将含有45°角的三角板ABC的一个锐角顶点C放在直线n上,则∠1+∠2等于( )
A.30° B.45° C.60° D.90°
下列说法:
①-ax2-4a=-a(x+2)(x-2);
②函数y=自变量取值范围是x≥3;
③=-1+;
④不等式组的整数解为x=0,1,2;
⑤两组数据1、2、3、4、5与6、7、8、9、10的波动程度相同;
⑥双曲线y=与抛物线y=x2-1只有一个交点.
其中正确的是( )
A.①②③ B.③④⑤ C.④⑤ D.④⑤⑥
如图,AB,CD分别是⊙O的弦和直径,AB⊥CD于点E,若CD=10,AB=8,则sin∠ACD的值为( )
A. 30° B. C. D. 2
如图1和图2,△ ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.过点A作AF⊥AE,过点C作CF∥AD,两直线交于点F.
(1)在图1中,证明:△ACF≌△ABE;
(2)在图2中,∠ACB的平分线交AB于点M,交AD于点N.
①求证:四边形ANCF是平行四边形;
②求证:ME=MA;
③四边形ANCF是不是菱形?若是,请证明;若不是,请简要说明理由.
如图,射线AB,CD分别与直线l相交于点G、H,若∠ 1=∠ 2,∠ C=65°,则∠ A的度数是 .
下列各数中,最大的数是( )
A.|-3| B.-2 C.0 D.1
某中学足球队的18名队员的年龄情况如下表:
年龄(单位:岁)
14
15
16
17
18
人数
3
6
4
1
则这些队员年龄的众数和中位数分别是( )
A.15,15 B.15,15.5 C.15,16 D.16,15