题目内容
已知圆锥的侧面展开图是一个半径为2、圆心角为90°的扇形,则该圆锥底面圆的半径为
.
| 1 |
| 2 |
| 1 |
| 2 |
分析:由题意易得扇形的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.
解答:解:扇形的弧长为:
=π,
∴圆锥的底面半径为π÷2π=
,
故答案为
.
| 90π×2 |
| 180 |
∴圆锥的底面半径为π÷2π=
| 1 |
| 2 |
故答案为
| 1 |
| 2 |
点评:此题主要考查了扇形的弧长公式,以及圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.
练习册系列答案
相关题目
已知圆锥的侧面展开图的圆心角为120°,则这个圆锥的侧面积是底面积的( )
| A、2倍 | ||
| B、3倍 | ||
C、
| ||
D、
|