题目内容
如图,把矩形ABCD纸片折叠,使点B落在点D处,点C落在C′处,折痕EF与BD交于点O,已知AB=16,AD=12,求折痕EF的长.
由折叠可知,EF垂直平分BD,又AB∥CD,
∴△BOF≌△DOE,
∴OF=OE,
∴四边形BEDF为菱形(对角线互相垂直平分的四边形是菱形),
设DF=FB=x,则AF=16-x,
在Rt△ABD中,由勾股定理得:BD=
在Rt△ADF中,由勾股定理得:AD2+AF2=DF2,
即122+(16-x)2=x2,
解得x=
根据菱形计算面积的公式,得
BF×AD=
即
解得EF=15cm.
分析:连接BE,利用折叠的性质证明四边形BEDF为菱形,设DF=FB=x,在Rt△ABD中,由勾股定理求BD,在Rt△ADF中,由勾股定理求x,利用菱形计算面积的两种方法,建立等式求EF.
点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等.综合运用勾股定理,菱形的面积公式.
练习册系列答案
相关题目